
Highlights

 xVelocity delivers break-through

gains for data warehouse queries

 First memory optimized

columnar data store integrated

into a mainstream relational

database engine

 Benchmark tests demonstrate

order-of-magnitude speedups

Introduction

The new xVelocity memory optimized

column store index feature in SQL

Server 2012 delivers breakthrough

performance gains for data warehouse

queries. SQL Server 2012 is the first

mainstream RDBMS to integrate a

memory optimized columnar data

storage capability into the relational

database engine. Using a

combination of compression,

algorithms enhanced for modern

CPU/memory architecture, and highly

parallel intra-query execution,

xVelocity can speed up query

execution times by 4x, 10x, and even

100x, simply by adding column store

indexes to the fact tables of a star-

schema data warehouse
*
.

Benchmark Results

To gauge the benefits of xVelocity,

Microsoft engineers measured a

collection of complex data

warehousing queries running with and

without column store indexes on a

large data warehouse. This datasheet

highlights key findings of the

benchmark results and various usage

considerations.

From test results, queries that benefit

from the memory optimized column

store index showed dramatic gains.

Queries that ran for minutes or tens of

minutes completed in seconds with

the new index. However, not all

queries showed these benefits

depending on their characteristics.

The graph Figure 2 on the next page

shows the speedup in elapsed times

for nine queries. It examines

performance with a cold buffer pool

(no pages in memory) and also a

warm buffer pool (after previous

queries had run). A cold buffer pool

requires that all data be read into

memory, whereas a warm buffer pool

is a purer indicator of scalability and

CPU efficiency.

With the cold buffer pool, speedups

ranged from 0.9 (a small slowdown) to

xVelocity in SQL Server 2012 Delivers Order-of-

Magnitude Gains for Data Warehouse Queries

107x, with most queries falling in the

8-20x range. For the warm buffer

pool, speedups were more disparate

with two queries seeing no speedup,

three queries in the 4-10x range, and

four queries showing speedups in the

range from 257 to 615x.

Data Warehouse Stats

The characteristics of the data

warehouse used in this benchmarking

exercise consisted of:

 1 terabyte of base table data

 24 tables total

o 7 fact tables

o 17 dimension tables

 6+ billion rows

 Star schema

Hardware Configuration

The server used for the tests was a

high-end industry standard server,

consisting of:

 CPUs

o Intel Xeon E7 4870 2.4GHz

o 4 proc, 40 cores, 80 threads

 Memory: 256 GB

 Data Disks

o 2 RAID5 stripes each with

o 15 x 136GB SAS

Usage Considerations

While xVelocity memory optimized

column store indexes can provide big

gains, there are some usage aspects to

consider.

One of the ways that Column store

indexes are memory optimized is

through efficient use of the buffer

pool. Column store indexes are paged

in and out of the buffer pool similarly

to row store pages, unlike other

columnar implementations that only

work if the entire dataset fits in

memory. Since column store indexes

are compressed and grouped by

column, they typically have a much

smaller memory footprint than the

row store data.

Column store indexes are read-only;

updates aren’t allowed for the indexes

or base tables. To update the base

table, drop or disable the column

store index, do updates, and then

rebuild the index.

Column store indexes are most

effective with data warehouses using a

star schema. You can get

breakthrough performance by

designing and optimizing for column

store indexes. But even without

schema or application changes,

column store indexes can improve

performance which then helps provide

higher ROI on new and existing

systems.

A common technique to optimize DW

performance is to build indexes and

aggregates that are tailored to the

particular needs of the users. This

carries two distinct disadvantages:

(1) choosing the indexes and

aggregates requires both insight

and expertise, and (2) aggregates

aren’t general purpose. In

contrast, column store indexes

retain all of the fine-grain detail of

the data, allowing users to do

arbitrary ad hoc queries with

consistently fast performance.

Learn More

To learn more, enter “columnstore”

in the search box at

msdn.microsoft.com.

Join the conversation

www.microsoft.com/sqlserver

Or follow us! /sqlserver

*
 The performance of any particular

application depends on many factors.

Results may vary.

http://msdn.microsoft.com/
http://www.microsoft.com/sqlserver

